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Abstract
In a previous paper [1] we introduced a very simple PT -symmetric non-
Hermitian Hamiltonian with a real spectrum and derived a closed formula for
the metric operator relating the problem to a Hermitian one. In this paper we
propose an alternative formula for the metric operator, which we believe is
more elegant and whose construction—based on a backward use of the spectral
theorem for self-adjoint operators—provides new insights into the nature of
the model.

PACS numbers: 02.30.Hq, 02.30.Tb, 03.65.Ge
Mathematics Subject Classification: 34L10, 47B50, 81Q05

1. Introduction

Although quantum mechanics is conceptually a self-adjoint theory, there are a number of
problems that require the analysis of non-self-adjoint operators. The study of resonances of
self-adjoint Schrödinger operators via the technique of complex scaling [2] or the derivation of
the famous Landau–Zener formula for the adiabatic transition probability between eigenstates
of a time-dependent two-level system [3] are just two examples. However, in contrast to
the well-understood theory of self-adjoint operators, the non-self-adjoint theory can be quite
different (cf a nice review [4]) and is certainly less developed. The former is much easier to
analyse because of the existence of the spectral theorem.

Recent years brought new motivations and focused attention to aspects of problems which
attracted little attention earlier. A strong impetus comes from the so-called PT -symmetric
quantum mechanics, where the Hamiltonian H of a system is not Hermitian but the Schrödinger
equation is invariant under a simultaneous change of spatial reflection P and time reversal
T (cf [5] for the pioneering work and [6] for a recent review with many references). Here
the interest consists of the fact that many of the PT -symmetric Hamiltonians possess a real
spectra and that the problem can be reinterpreted as an Hermitian one in a different Hilbert
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space. Indeed, and more generally, the identification is provided by the quasi-Hermiticity
relation [7–10]:

H ∗� = �H (1)

valid on the domain of H. Here � is a bounded positive Hermitian operator, called metric.
There have been many attempts to calculate the metric operator � for the various PT -

symmetric models of interest (cf [1] for related references to which we add the Swanson
model [11–13] and recent works [14, 15]). Most recent developments have come up with new
efficient methods of how to calculate the metric [16–20], involving exact (non-perturbative)
solutions in a compact form. Because of the complexity of the problem, however, it is not
surprising that the majority of the available formulae for � are still approximative, usually
expressed as leading terms of perturbation series.

Another problematic aspect of the available results is that the calculations are usually
formal, partly because the boundedness of � is not always verified. However, the boundedness
of the metric is a necessary condition, as addressed already in the original paper [7] and further
emphasized in [21].

For these reasons we decided in [1] to introduce a new one-parametric non-Hermitian
PT -symmetric Hamiltonian Hα with a real spectrum and derived a formula for its metric �α

in a closed form and in a rigorous manner. These achievements were made possible by the
manifest simplicity of our model: recalling thePT -symmetric operators with general complex
point interactions introduced by Albeverio, Fei and Kurasov in [22], our model can be roughly
viewed as the Hamiltonian of a potential-free particle constrained to a bounded interval with
two point-type interactions ‘sitting’ at the interval endpoints. In other words, we introduce
a non-trivial coupling due to boundary conditions rather than to a local potential term. The
calculation of the metric in [1] then relied on the fact that the eigenfunctions of Hα can be
expressed explicitly in terms of trigonometric functions. Using the completeness of the latter,
the metric operator was constructed by summing up certain trigonometric series.

The ultimate objective of this paper is to point out that the series determining �α can
be summed up alternatively—and probably more elegantly—by using the spectral theorem.
Moreover, we believe that the resulting formula for the metric has a more transparent structure
than that presented in [1]. Indeed, the individual terms of the present formula are well-known
integral operators with explicit and extremely simple kernels (cf remark 4 below). We also
hope that the simplicity of the formula will stimulate further study of the quasi-Hermiticity of
our model, namely a (perturbative) computation of the square root of the metric operator and
the corresponding Hermitian counterpart of Hα .

For the convenience of the reader we state here a simple version of the spectral theorem
we shall use later:

Theorem 1 (Spectral theorem). Let H be a self-adjoint operator with compact resolvent in a
Hilbert space with inner product (·, ·), antilinear in the first factor and linear in the second
one. Then

f (H) =
∞∑

j=0

f (Ej )ψj (ψj , ·) (2)

for any complex-valued, continuous function f . Here {Ej }∞j=0 and {ψj }∞j=0 denote respectively
the set of eigenvalues and corresponding eigenfunctions of H.

We refer to [23, section VI.5] for a proof and a more general version of the spectral
theorem when the compactness assumption is relaxed. Similar spectral decompositions hold
also for normal operators, but they are in general false in the non-self-adjoint theory. Therefore
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it is remarkable that a modified version of (2) with f (E) = En, n ∈ N, still holds for our
non-Hermitian operator Hα (cf [1, proposition 4] for the case n = 0, the other cases being a
consequence).

The spectral theorem is usually used to construct a function of a self-adjoint operator
in terms of the sum of spectral projections. In this paper we use it backwards: we identify
eigenprojections of a self-adjoint operator and replace an infinite series by a function of the
operator. Unfortunately, the present method does not seem to be applicable in general. The
reason why it works in the present model is that the eigenfunctions of Hα can be expressed in
terms of eigenfunctions of self-adjoint operators.

In the forthcoming section 2 we recall the model introduced in [1] (we refer to that
reference for more details and other results). This is followed by section 3 where the alternative
formula for the metric is established.

2. The model

The underlying Hilbert space of the model introduced in [1] is the space of square-integrable
functions H := L2((0, d)), where d is a positive number. While it is irrelevant that
we consider an open interval in the definition of the Hilbert space, this choice turns out to be
convenient when defining differential operators in H via the quadratic-form approach, since
the corresponding Sobolev (energy) spaces are standardly defined over open sets only [24].

The simplicity of the Hamiltonian Hα defined in H is that it acts as the potential-free
Hamiltonian

Hαψ := −ψ ′′ in (0, d),

while the non-Hermiticity enters uniquely through complex Robin boundary conditions

ψ ′(0) + iαψ(0) = 0 and ψ ′(d) + iαψ(d) = 0, (3)

where α is a real constant. Using the quadratic-form approach, it was shown in [1] that Hα ,
with the domain D(Hα) consisting of all functions ψ in the Sobolev space W 2,2((0, d)) such
that (3) holds, is an m-sectorial operator in H. Note that the boundary terms in (3) are well
defined because every element of W 2,2((0, d)) can be identified with a smooth function over
[0, d] in the sense of Sobolev embedding theorem [24]. The PT -symmetry of our model is
reflected by the relation

H ∗
α = H−α,

where H ∗
α denotes the adjoint of Hα .

Remark 1. A more general class of one-dimensional Schrödinger operators with non-
Hermitian boundary conditions of the type (3) was studied previously by Kaiser, Neidhardt
and Rehberg in [25]. In their paper—motivated by the needs of semiconductor physics, or
more generally by regarding a quantum system as an open one—the parameter α is allowed
to be complex but its imaginary part has opposite signs on the boundary points such that the
system is dissipative. In our case (3), we actually deal with radiation/absorption boundary
conditions in the language of theory of electromagnetic field.

It was also shown in [1] that the spectrum of Hα is purely discrete and given by

σ(Hα) = {α2} ∪ {
k2
j

}∞
j=1, where kj := jπ/d. (4)

Moreover, all the eigenvalues are simple provided

αd/π �∈ Z\{0}. (5)
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Assuming this non-degeneracy condition, the eigenfunctions of the adjoint H ∗
α corresponding

to the eigenvalues counted as in (4) can be chosen as

φα
j (x) :=

⎧⎨
⎩

χN
0 + ρα(x) if j = 0,

χN
j (x) + i

α

kj

χD
j (x) if j � 1.

(6)

Here

ρα(x) := exp(iαx) − 1√
d

and
{
χN

j

}∞
j=0, respectively

{
χD

j

}∞
j=1, denotes the complete orthonormal family of the

eigenfunctions of the Neumann Laplacian −	N , respectively Dirichlet Laplacian −	D , in H

χN
j (x) :=

{√
1/d if j = 0,√
2/d cos(kjx) if j � 1,

χD
j (x) :=

√
2/d sin(kjx).

Here the index for Dirichlet eigenfunctions runs over j � 1. Note that −	N = H0 and that
the spectrum of −	D is equal to

{
k2
j

}∞
j=1.

3. Calculation of the metric

Still under the hypothesis (5), it was demonstrated in [1] that the operator

�α :=
∞∑

j=0

φα
j

(
φα

j , ·) ≡ s– lim
m→∞

m∑
j=0

φα
j

(
φα

j , ·) (7)

is bounded, symmetric, positive and satisfying (1) with Hα . Here (·, ·) denotes the inner
product in H, antilinear in the first factor and linear in the second one. Furthermore, a closed
integral-type formula for the operator was derived by using known results about the sum of
trigonometric functions.

Now we propose an alternative way how to sum up the infinite series in (7). First we write
�α as

�α = P α
0 + �(0) + α�(1) + α2�(2)

with

P α
0 := φα

0

(
φα

0 , ·) = P N
0 + χN

0 (ρα, ·) + ρα

(
χN

0 , ·) + ρα(ρα, ·),

�(0) :=
∞∑

j=1

χN
j

(
χN

j , ·) = I − P N
0 ,

�(1) :=
∞∑

j=1

(−ik−1
j χN

j

(
χD

j , ·) + ik−1
j χD

j

(
χN

j , ·)),
�(2) :=

∞∑
j=1

k−2
j χD

j

(
χD

j , ·) = (−	D)−1,

where P N
0 := χN

0

(
χN

0 , ·) = P 0
0 and I denotes the identity operator in H. The equalities in the

second and fourth lines follow directly by theorem 1 applied to −	N and −	D , respectively.
In order to use the spectral theorem in �(1) as well, we introduce a ‘momentum’ operator p in
H by

pψ := −iψ ′, D(p) := W
1,2
0 ((0, d)). (8)
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The adjoint operator p∗ acts in the same way but has a larger domain, D(p∗) = W 1,2((0, d)).
Since χD

j and χN
j belong to D(p) and D(p∗), respectively, we have pχD

j = −ikjχ
N
j and

p∗χN
j = ikjχ

D
j . Consequently, theorem 1 yields

�(1) = p

∞∑
j=1

k−2
j χD

n

(
χD

n , ·) + p∗
∞∑

j=1

k−2
j χN

n

(
χN

n , ·)

= p(−	D)−1 + p∗(−	⊥
N

)−1
,

where −	⊥
N := (I − P N)(−	N)(I − P N). Note that the ‘interchange of summation and

differentiation’ in the first equality is justified just by the definition of the sum in (7) and the
distributional derivative in (8).

Summing up, we get

Theorem 2. The linear operator �α in H defined by

�α = I + P α
0 − P N

0 + αp(−	D)−1 + αp∗(−	⊥
N

)−1
+ α2(−	D)−1 (9)

is bounded, symmetric, non-negative and satisfies (1) with Hα . Furthermore, �α is positive if
condition (5) holds true.

Note that the metric �α tends to I as α → 0, which is expected due to the fact that H0

coincides with the self-adjoint operator −	N .

Remark 2. Formula (9) can be written exclusively in terms of the operators p and p∗ by
employing the identities −	D = p∗p and −	N = pp∗. Note also that the resolvent (−	D)−1

and the reduced resolvent
(−	⊥

N

)−1
are integral operators with explicit and extremely simple

kernels (cf [23, example III.6.21].
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[10] Mostafazadeh A 2002 Pseudo-Hermiticity versus PT symmetry: III. Equivalence of pseudo-Hermiticity and the
presence of antilinear symmetries J. Math. Phys. 43 3944–51

[11] Swanson M S 2004 Transition elements for a non-Hermitian quadratic Hamiltonian J. Math. Phys. 45 585–601
[12] Geyer H B, Scholtz F G and Snyman I 2004 Quasi-hermiticity and the role of a metric in some boson

Hamiltonians Czech. J. Phys. 54 1069–73
[13] Jones H F 2005 On pseudo-Hermitian Hamiltonians and their Hermitian counterparts J. Phys. A 38 1741–6
[14] Mostafazadeh A 2006 Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic

potential J. Phys. A 39 10171–88
[15] Mostafazadeh A 2006 Delta-function potential with a complex coupling J. Phys. A 39 13495–506
[16] Mostafazadeh A 2006 Differential realization of pseudo-hermiticity: a quantum mechanical analog of Einstein’s

field equation J. Math. Phys. 47 072103
[17] Scholtz F G and Geyer H B 2006 Operator equations and Moyal products—metrics in quasi-Hermitian quantum

mechanics Phys. Lett. B 634 84–92
[18] Scholtz F G and Geyer H B 2006 Moyal products—a new perspective on quasi-hermitian quantum mechanics

J. Phys. A 39 10189–205
[19] Figueira de Morisson Faria C and Fring A 2006 Isospectral Hamiltonians from Moyal Products Czech. J. Phys.

56 899–908
[20] Musumbu D P, Scholtz F G and Geyer H B 2007 Choice of a metric for the non-hermitian oscillator J. Phys.

A 40 F75–80
[21] Kretschmer R and Szymanowski L 2004 Quasi-Hermiticity in infinite-dimensional Hilbert spaces Phys. Lett.

A 325 112–7
[22] Albeverio S, Fei S M and Kurasov P 2002 Point interactions PT -Hermiticity and reality of the spectrum Lett.

Math. Phys. 59 227–42
[23] Kato T 1966 Perturbation Theory for Linear Operators (Berlin: Springer)
[24] Adams R A 1975 Sobolev Spaces (New York: Academic)
[25] Kaiser H Ch, Neidhardt H and Rehberg J 2003 On one dimensional dissipative Schrödinger-type operators their

dilations and eigenfunction expansions Math. Nachr. 252 51–69

6

http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1063/1.1640796
http://dx.doi.org/10.1023/B:CJOP.0000044007.58266.a0
http://dx.doi.org/10.1088/0305-4470/38/8/010
http://dx.doi.org/10.1088/0305-4470/39/32/S18
http://dx.doi.org/10.1088/0305-4470/39/43/008
http://dx.doi.org/10.1063/1.2212668
http://dx.doi.org/10.1016/j.physletb.2006.01.022
http://dx.doi.org/10.1088/0305-4470/39/32/S19
http://dx.doi.org/10.1007/s10582-006-0386-x
http://dx.doi.org/10.1088/1751-8113/40/2/F03
http://dx.doi.org/10.1016/j.physleta.2004.03.044
http://dx.doi.org/10.1023/A:1015559117837
http://dx.doi.org/10.1002/mana.200310037

	1. Introduction
	2. The model
	3. Calculation of the metric
	Acknowledgments
	References

